OIL FIRED CENTRAL FURNACE with Variable Speed blower THV1M087A9V3 - 9V5SA, TLF1M087A9V3 - 9V5SA

TLR1M087A9V3 - 9V5SA, TDF1M087A9V3 - 9V5SA

<u>IMPORTANT</u> — This document contains a wiring diagram and service information. This is customer property and is to remain with this furnace. Please return to service information pack upon completion of work.

A WARNING DISCONNECT POWER BEFORE SERVICING

Oil Fired Furnace Specifications												
Model	THV1M087A9V3 & 9V5SA			A	TL	.F1M087A9 .R1M087A9	9V3 & 9V5S 9V3 & 9V5S	SA SA	т	DF1M087A9	9V3 & 9V5S	A
Туре		Upflow -	Highboy			Upflow -	Lowboy			Downflow -	Horizonta	
Heat input Rate (BTUH):	140,000	119,000	105,000	84,000	140,000	119,000	105,000	84,000	140,000	119,000	105,000	84,000
Heating Capacity (BTUH): 1	114,000	98,000	88,000	70,000	114,000	98,000	87,000	70,000	114,000	98,000	87,000	70,000
Nominal Temperature Rise (deg. F):		7	0			7	0			7	0	
Minimum AFUE (I.C.S.) Rating (%):	тн тн	V1M087A9 V1M087A9	V3SA - 84.3 V5SA - 84.3	3% 3%	TLF TL TL TL	1M087A9V F1M087A9 R1M087A9 R1M087A9	/3SA - 83.4 V5SA - 83.4 V3SA - 84./ V5SA - 84./	.0% 1% 2% 2%	TD TD	F1M087A9 F1M087A9	V3SA - 83.3 V5SA - 83.3	3% 3%
Burner Specifications:	R.W. E	Beckett Pre Type, M	ssure Aton odel AF	nizing	R.W. Bec	kett Press Mode	ure Atomiz el AF	ing Type,	R.W. Bec	kett Press Mode	ure Atomizi el AF	ing Type,
Air Tube Length (in.):		5.875, E	ffective			5.875, E	ffective			5.875, E	ffective	
Burner Head Type:	F	ixed, Flam	e Retentior	า	F	ixed, Flam	e Retentio	n	F	ixed, Flam	e Retentior	า
Fuel Type:	# 2 Dist	illate (Don	nestic Heati	ing Oil)	# 2 Dist	illate (Don	nestic Heat	ing Oil)	# 2 Dist	tillate (Dom	nestic Heat	ing Oil)
Nozzle Rating For Beckett AF (GPH):	1.00	0.85	0.75	0.60	1.00	0.85	0.75	0.60	1.00	0.85	0.75	0.60
Spray Angle (deg.):		8	0			8	0			8	0	
Spray Pattern:		Hol	low			Hol	low			Hol	low	
Oil Pump Pressure (PSIG):		13	30			13	30			13	30	
Ignition Control Type:	In	terrupted,	Direct Spar	rk	In	terrupted,	Direct Spa	rk	In	terrupted,	Direct Spar	rk
Delay valve on / Post Purge Feature:		Yes	/ no			Yes	/ no			Yes	/ no	
Automatic Oil Solenoid Valve:		Ye	es			Ye	es		Yes			
Blower Drive:		Dir	ect			Dir	ect			Dir	ect	
	THV1M08	7A9V3SA	THV1M08	7A9V5SA	TLF1M08 TLR1M08	7A9V3SA 7A9V3SA	TLF1M08 TLR1M08	7A9V5SA 7A9V5SA	TDF1M08	7A9V3SA	TDF1M08	7A9V5SA
Diameter x Width (in.):	10	x 9	12	х 9	10	x 9	11	x 9	10	х 9	12	х 9
No. Used:	1	l	1		1		1		1	I	1	
Speeds (no.):	Vari	able	Varia	able	Varia	able	Varia	able	Variable		Varia	able
CFM vs in. w.c.:	See	e Fan Perfo	ormance Ta	ble	See	e Fan Perfo	ormance Ta	ble	See	e Fan Perfo	ormance Ta	ble
Motor HP:	1/	2	1		1/	2	1		1/	2	1	
Volts / Ph. / Hz.:		120/	60/1			120/	60/1			120/	60/1	
Filter Furnished?:		Ye	es			Ye	es			N	o	
Type Recommended:		Hi Ve	locity			Hi Ve	locity			Hi Ve	locity	
No Size x Thick:		1 - 16 x	25 x 1			2 - 10 x	20 x 1			Not Su	pplied	
Vent - Size (in.):		6	6			6	<u> </u>				6	
Gross Heat Exchanger Area (sq. ft.):	Area (sq. 27.8 27.8 (Front Flue) / 30.0 (Rear Flue)					r Flue)		27	7.8			
Suply / Return Size (in. x in.):		See Outlin	e Drawing			See Outlin	e Drawing			See Outlin	e Drawing	
Combustion Chamber Type:	Preformed, Refactory (Ceramic Fiber Matrix Material)			erial)	(Cera	Preformed	, Refactory Matrix Mat	erial)	(Cera	Preformed amic Fiber	, Refactory Matrix Mate	erial)
Total Current (amps.):	.): 13.5 18.8				13	.5	18	.8	13	3.5	18	.8
Max. Fuse Size (amps.):	15 30				1	5	3	0	1	5	3	0
Dimensions uncrated (in.):	H X W X D 58 X 22.25 X 31				H X W X D 41.5 X 22.25 X 47				H X W X D 22.25 X 61.25 X 22.25			
Weight Shipping (Ibs.) / Net (Ibs.)		260	/ 250			300 /	/ 290			280	/ 270	
¹ Lowest heating capacity represent	ted, refer to	AHRI dire	ctory for a	ctual heat	ing capacity	<i>y</i> .						

		AIRFLOW		DIP SWITC	H SETTING				EXTERNA	L STATIC P	RESSURE	
	(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
		Low (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1093 183	1120 267	1120 340	1113 413	1091 471
	3.5	Normal (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1254 262	1296 382	1296 467	1284 552	1244 608
		High (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	1259 271	1300 375	1306 472	1298 557	1250 609
		Low (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	940 154	919 207	900 254	881 310	862 371
NG	3**	Normal** (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1057 213	1060 291	1049 352	1037 409	1015 468
50		High (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1217 300	1211 387	1196 461	1179 525	1151 582
Ŭ		Low (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	788 104	775 152	761 197	714 239	674 284
	2.5	Normal (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	904 145	880 194	868 240	840 290	818 348
		High (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1007 181	1001 248	987 302	978 357	962 417
		Low (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	634 67	607 99	585 142	542 181	493 218
	2	Normal (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	541 85	682 127	808 173	929 218	1030 260
		High (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	817 113	805 162	792 206	748 249	710 300

TLR/F1M087A9V3SA OIL FURNACE COOLING AND HEATING AIRFLOW AND POWER VS. EXTERNAL STATIC PRESSURE WITH FILTER

		DIP SWITC	H SETTING			EXTERNA	L STATIC P	RESSURE	
	AIRTEOW SETTING	SW 7	SW 8		0.1	0.3	0.5	0.7	0.9
	LOW	ON	ON	CFM	804	791	792	780	761
	(920 CFM)			WATTS	100	146	198	256	307
	MEDIUM LOW	OFF	ON	CFM	985	991	988	987	964
	(1145 CFM)	OFF		WATTS	146	221	283	346	393
HEATING	MEDIUM HIGH**	ON	OFF	CFM	1107	1111	1127	1129	1122
	(1290 CFM)			WATTS	192	272	355	428	498
	HIGH	OFF	055	CFM	1293	1330	1332	1324	1319
	(1500 CFM) OFF		OFF OFF		291	407	495	582	661

NOTES:

1. **FACTORY SETTING.

2. CONTINUOUS FAN SETTING: HEATING OR COOLING AIRFLOW IS APPROXIMATELY 50% OF SELECTED COOLING VALUE.

3. FOR VARIABLE SPEED: LOW SPEED AIRFLOWS ARE APPROXIMATELY 30% OF LISTED VALUES.

		AIRFLOW		DIP SWITC	H SETTING				EXTERNA	L STATIC P	RESSURE	
	(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
		Low (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1539 438	1548 573	1533 674	1527 761	1525 866
	5**	Normal ** (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1756 635	1759 790	1766 970	1740 1055	1722 1180
		High (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	1948 870	1958 1063	1927 1215	1852 1240	1780 1255
		Low (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	1198 237	1216 322	1223 403	1223 493	1221 565
SOOLING	4	Normal (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1396 339	1434 464	1425 565	1401 631	1406 741
		High (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1572 467	1577 588	1570 708	1574 816	1575 922
ы		Low (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	1056 172	1053 251	1047 304	1048 375	1046 445
	3.5	Normal (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	1200 232	1216 326	1237 425	1231 494	1226 575
	-	High (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1363 317	1407 449	1405 552	1388 625	1381 712
		Low (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	774 95	754 138	741 183	728 233	705 289
	2.5	Normal (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	863 111	875 177	861 228	859 284	826 334
		High (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	962 140	971 208	969 270	951 320	935 383

TLR/F1M087A9V5SA OIL FURNACE COOLING AND HEATING AIRFLOW AND POWER VS. EXTERNAL STATIC PRESSURE WITH FILTER

	AIRFLOW	DIP SWITC	H SETTING			EXTERNA	L STATIC P	RESSURE	
	SETTING	SW 7	SW 8		0.1	0.3	0.5	0.7	0.9
	LOW	ON	ON	CFM	804	791	792	780	761
	(920 CFM)			WATTS	100	146	198	256	307
HEATING	MEDIUM LOW	OFF	ON	CFM	985	991	988	987	964
	(1145 CFM)			WATTS	146	221	283	346	393
HEATING	MEDIUM HIGH **	ON	OFF	CFM	1107	1111	1127	1129	1122
	(1290 CFM)		OFF	WATTS	192	272	355	428	498
	HIGH (1500 CFM) OFF		OFF	CFM	1293	1330	1332	1324	1319
			OFF OFF		291	407	495	582	661

NOTES:

1. **FACTORY SETTING.

2. CONTINUOUS FAN SETTING: HEATING OR COOLING AIRFLOW IS APPROXIMATELY 50% OF SELECTED COOLING VALUE.

3. FOR VARIABLE SPEED: LOW SPEED AIRFLOWS ARE APPROXIMATELY 30% OF LISTED VALUES.

		AIRFLOW		DIP SWITC	H SETTING				EXTERNA	L STATIC P	RESSURE	
	(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
		Low (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1127 229	1147 295	1148 356	1138 413	1117 470
	3.5	Normal (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1278 321	1293 398	1297 469	1293 536	1272 597
		High (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	1301 336	1320 419	1323 493	1315 558	1287 611
		Low (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	969 152	993 213	1004 272	997 329	968 377
	3**	Normal ** (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1132 225	1145 289	1147 350	1136 405	1106 460
		High (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1264 308	1253 369	1270 441	1260 502	1241 562
ы С		Low (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	802 98	836 150	829 199	802 238	789 280
	2.5	Normal (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	910 132	942 189	949 244	941 300	918 346
		High (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1048 185	1077 251	1083 311	1072 368	1041 419
		Low (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	669 67	677 107	669 146	663 184	642 220
	2	Normal (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	749 85	781 134	772 179	751 217	731 254
		High (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	837 111	868 162	862 211	841 255	829 300

THV1M087A9V3SA OIL FURNACE COOLING AND HEATING AIRFLOW AND POWER VS. EXTERNAL STATIC PRESSURE WITH FILTER

	AIRFLOW	DIP SWITCH SETTING				EXTERNA	L STATIC P	RESSURE	
	SETTING	SW 7	SW 8		0.1	0.3	0.5	0.7	0.9
		ON	ON	CFM	857	882	883	858	843
	LOW			WATTS	115	167	219	263	307
		OFF	ON	CFM	1061	1086	1092	1080	1051
		011		WATTS	196	261	321	378	430
HEATING			055	CFM	1198	1205	1197	1193	1172
	MEDIOWINION			WATTS	272	337	395	458	517
	ЦСЦ	OFF	055	CFM	1280	1295	1297	1287	1265
	поп			WATTS	330	407	476	538	596

NOTES:

1. **FACTORY SETTING.

2. CONTINUOUS FAN SETTING: HEATING OR COOLING AIRFLOW IS APPROXIMATELY 50% OF SELECTED COOLING VALUE.

3. FOR VARIABLE SPEED: LOW SPEED AIRFLOWS ARE APPROXIMATELY 30% OF LISTED VALUES.

		AIRFLOW		DIP SWITC	H SETTING				EXTERNA	L STATIC P	RESSURE	
	(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
		Low (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1609 543	1616 642	1620 737	1623 836	1632 936
	5**	Normal ** (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1841 818	1835 925	1820 1020	1807 1110	1779 1181
		High (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	2040 1142	1978 1161	1915 1178	1864 1204.08	1810 1215.44
		Low (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	1277 287	1296 370	1301 446	1314 531	1311 604
UNG NG	4	Normal (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1494 440	1501 530	1504 615	1492 690	1493 776
		High (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1661 595	1659 689	1657 782	1665 890	1657 979
ŭ		Low (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	1094 195	1103 258	1122 332	1125 402	1124 473
	3.5	Normal (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	1277 288	1304 374	1305 449	1317 532	1312 606
-	0.0	High (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1477 428	1470 504	1470 586	1472 673	1461 745
		Low (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	866 115	893 172	893 228	886 287	879 346
	3	Normal (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	1081 189	1096 255	1106 322	1104 387	1101 458
		High (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	1213 253	1244 340	1269 425	1275 500	1266 573

THV1M087A9V5SA OIL FURNACE COOLING AND HEATING AIRFLOW AND POWER VS. EXTERNAL STATIC PRESSURE WITH FILTER

	AIRFLOW	DIP SWITC	H SETTING			EXTERNA	L STATIC P	RESSURE	
	SETTING	SW 7	SW 8		0.1	0.3	0.5	0.7	0.9
			ON	CFM	864	895	899	899	879
	LOW			WATTS	111	169	224	239	334
			ON	CFM	1052	1064	1059	1057	1061
		OFF		WATTS	174	238	296	359	431
HEATING		ON	OFF	CFM	1162	1185	1202	1205	1211
				WATTS	226	302	378	450	526
	шсч	055	OFF	CFM	1377	1397	1396	1399	1401
	поп			WATTS	353	445	520	604	688

NOTES:

1. **FACTORY SETTING.

2. CONTINUOUS FAN SETTING: HEATING OR COOLING AIRFLOW IS APPROXIMATELY 50% OF SELECTED COOLING VALUE.

3. FOR VARIABLE SPEED: LOW SPEED AIRFLOWS ARE APPROXIMATELY 30% OF LISTED VALUES.

		AIRFLOW		DIP SWITC	H SETTING				EXTERNA	L STATIC P	RESSURE	
	(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
		Low (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1215 232	1243 303	1235 371	1227 442	1211 507
	3.5	Normal (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1375 290	1389 378	1414 492	1417 571	1364 600
		High (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	1375 290	1389 378	1414 492	1417 571	1364 600
		Low (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	992 141	1048 218	1065 277	1068 348	1044 406
DNG	3**	Normal ** (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1173 189	1229 288	1235 358	1226 438	1206 498
JOL		High (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1358 295	1361 353	1375 452	1374 548	1340 607
ы С		Low (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	836 81	879 148	872 197	863 254	839 313
	2.5	Normal (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	938 114	1000 187	1006 250	1014 321	992 384
	2.5	High (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1085 156	1135 234	1145 312	1148 386	1115 433
		Low (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	690 65	705 107	699 155	677 198	649 235
	2	Normal (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	782 79	813 134	818 184	801 231	760 279
		High (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	853 88	920 163	911 216	901 278	885 327

TDF1M087A9V3SA OIL FURNACE COOLING AND HEATING AIRFLOW AND POWER VS. EXTERNAL STATIC PRESSURE WITH FILTER

	AIRFLOW	DIP SWITC	VITCH SETTING		EXTERNAL STATIC PRESSURE				
	SETTING	SW 7	SW 8		0.1	0.3	0.5	0.7	0.9
		ON	ON	CFM	864	913	919	910	892
	LOW			WATTS	94	161	220	281	337
		OFF	F ON	CFM	1103	1148	1159	1151	1117
				WATTS	175	253	324	404	462
HEATING		ON	N OFF	CFM	1267	1292	1298	1301	1289
	MEDIOWITIGH			WATTS	245	329	417	489	553
	нсн	OFF	OFF	CFM	1375	1389	1414	1417	1364
	nion		OFF	WATTS	290	378	492	571	600

NOTES:

1. **FACTORY SETTING.

2. CONTINUOUS FAN SETTING: HEATING OR COOLING AIRFLOW IS APPROXIMATELY 50% OF SELECTED COOLING VALUE.

3. FOR VARIABLE SPEED: LOW SPEED AIRFLOWS ARE APPROXIMATELY 30% OF LISTED VALUES.

		AIRFLOW		DIP SWITC	H SETTING				EXTERNA	L STATIC P	RESSURE	
	(TONS)	SETTING	SW 1	SW 2	SW 3	SW 4		0.1	0.3	0.5	0.7	0.9
		Low (350 CFM/TON)	OFF	OFF	OFF	ON	CFM WATTS	1665 522	1665 621	1684 747	1665 830	1675 939
	5**	Normal ** (400 CFM/TON)	OFF	OFF	OFF	OFF	CFM WATTS	1884 751	1895 884	1905 1040	1895 1120	1863 1230
		High (450 CFM/TON)	OFF	OFF	ON	OFF	CFM WATTS	2147 1170	2087 1190	2025 1220	1960 1230	1880 1250
		Low (350 CFM/TON)	ON	OFF	OFF	ON	CFM WATTS	1274 271	1289 334	1334 429	1348 545	1348 637
NU	4	Normal (400 CFM/TON)	ON	OFF	OFF	OFF	CFM WATTS	1490 377	1516 495	1533 600	1541 672	1549 796
20		High (450 CFM/TON)	ON	OFF	ON	OFF	CFM WATTS	1715 575	1715 671	1715 769	1724 879	1715 1020
ö		Low (350 CFM/TON)	OFF	ON	OFF	ON	CFM WATTS	1132 192	1168 266	1186 350	1186 424	1186 495
	3.5	Normal (400 CFM/TON)	OFF	ON	OFF	OFF	CFM WATTS	1291 263	1302 357	1332 449	1372 547	1372 646
		High (450 CFM/TON)	OFF	ON	ON	OFF	CFM WATTS	1486 388	1518 503	1542 609	1565 711	1565 809
		Low (350 CFM/TON)	ON	ON	OFF	ON	CFM WATTS	972 119	1005 201	1021 265	1015 331	999 405
	3	Normal (400 CFM/TON)	ON	ON	OFF	OFF	CFM WATTS	1110 180	1142 260	1148 329	1154 404	1154 488
		High (450 CFM/TON)	ON	ON	ON	OFF	CFM WATTS	1254 238	1268 318	1290 405	1318 528	1318 607

TDF1M087A9V5SA OIL FURNACE COOLING AND HEATING AIRFLOW AND POWER VS. EXTERNAL STATIC PRESSURE WITH FILTER

	AIRFLOW DIP SWITCH SETT		H SETTING		EXTERNAL STATIC PRESSURE				
	SETTING	SW 7	SW 8		0.1	0.3	0.5	0.7	0.9
HEATING	LOW	ON	ON	CFM	871	876	894	890	871
				WATTS	104	155	221	282	336
	MEDIUM LOW	OFF	ON	CFM	1051	1081	1104	1104	1087
				WATTS	160	229	306	380	445
	MEDIUM HIGH **	ON	OFF	CFM	1178	1213	1247	1247	1260
				WATTS	219	285	389	466	550
	HIGH	OFF	OFF	CFM	1389	1421	1442	1473	1483
				WATTS	311	415	519	627	715

NOTES:

1. **FACTORY SETTING.

2. CONTINUOUS FAN SETTING: HEATING OR COOLING AIRFLOW IS APPROXIMATELY 50% OF SELECTED COOLING VALUE.

3. FOR VARIABLE SPEED: LOW SPEED AIRFLOWS ARE APPROXIMATELY 30% OF LISTED VALUES.

CFM vs. Temperature Rise														
Madal	Heating													
Ca	Capacity	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Highboy THV1M087A9V3SA	70,000		72	65	59	54	50	46	43					
	87,000		90	81	73	67	62	58	54					
	98,000		101	91	82	76	70	65	60					
	114,000		117	106	96	88	81	75	70					
	70,000			65	59	54	50	46	43	41	38	36	34	32
Highboy	87,000			81	73	67	62	58	54	50	47	45	42	40
THV1M087A9V5SA	98,000			91	82	76	70	65	60	57	53	50	48	45
	114,000			106	96	88	81	75	70	66	62	59	56	53
	70,000		72	65	59	54	50	46	43	41				
Lowboy	87,000		90	81	73	67	62	58	54	50				
TLF1M087A9V3SA	98,000		101	91	82	76	70	65	60	57				
	114,000		117	106	96	88	81	75	70	66				
	70,000		72	65	59	54	50	46	43	41	38	36	34	
Lowboy Front Flue TLF1M087A9V5SA	87,000	1	90	81	73	67	62	58	54	50	47	45	42	
	98,000		101	91	82	76	70	65	60	57	53	50	48	
	114,000		117	106	96	88	81	75	70	66	62	59	56	
	70,000	81	72	65	59	54	50	46	43	41	38			
Lowboy	87,000	101	90	81	73	67	62	58	54	50	47			
Rear Flue TLR1M087A9V3SA	98,000	113	101	91	82	76	70	65	60	57	53			
	114,000	Not allowed	117	106	96	88	81	75	70	66	62			
	70,000		72	65	59	54	50	46	43	41	38	36		
Lowboy Rear Flue TLR1M087A9V5SA	87,000		90	81	73	67	62	58	54	50	47	45		
	98,000		101	91	82	76	70	65	60	57	53	50		
	114,000		117	106	96	88	81	75	70	66	62	59		
Downflow/Horizontal TDF1M087A9V3SA	70,000		72	65	59	54	50	46	43	41				
	87,000		90	81	73	67	62	58	54	50				
	98,000		101	91	82	76	70	65	60	57				
	114,000		117	106	96	88	81	75	70	66				
	70,000			65	59	54	50	46	43	41	38	36	34	
Downflow/Horizontal	87,000			81	73	67	62	58	54	50	47	45	42	
TDF1M087A9V5SA	98,000			91	82	76	70	65	60	57	53	50	48	
	114,000			106	96	88	81	75	70	66	62	59	56	

The shaded area is the recommended operating range for HEATING comfort

To Shut Off

For complete shutdown: Turn the oil fuel supply line valve to the off position. The valve is typically located close to the oil tank. Disconnect the electrical supply to the furnace.

CAUTION

If this is done during cold winter months, provisions must be taken to prevent freeze-ups of all water pipes and water receptacles.

Whenever your house is to be vacant, arrange to have someone inspect your house for proper temperature. This is very important during freezing weather. If for any reason your furnace should fail to operate damage could result, such as frozen water pipes.

SEQUENCE OF OPERATION

Turn on the main electrical supply and set the Comfort Control above the indicated temperature.

Step 1: The Thermostat's contacts close between W1 and RH completing the oil burner's primary control T-circuit. **Step 2**: The primary control initiates a self-check for 2 to 6 seconds.

Step 3: Primary control supplies line voltage to both the igniter and burner motor. The oil pump solenoid valve is delayed from opening for 15 second (valve on delay) start. **Step 4:** The oil pump solenoid valve is opened and a 15 second ignition trial is started. If flame is not sensed at the end of the 15-second ignition trial, the control shuts down on safety and must be manually reset (push RED button 1-2 sec). If the control shuts down after 3 consecutive manual resets, the control enters a restricted lockout and will require reset (push RED button for 30+ sec.). **Step 5:** Once flame is established, the ignition remains on

for 10 seconds to insure flame stability.

Step 6: The burner continues to operate until the call for heat is removed by opening the primary controls "T – T" circuit. If flame is lost after the primary control has sensed flame, the primary control will enter an automatic 60-second recycle delay and then will return to the ignition sequence. If the flame is lost two more consecutive times (total of 3 times during a continuous call for heat), the primary control will enter a restricted lockout and require reset (push RED button for 30+ sec.).

Step 7: As the temperature rises in the furnace to the point of the fan control Thermostat's preset fan on temperature, the fan control Thermostat closes and supplies line voltage to the fan center relay. The fan center relays normally opened contacts #4 and #6 close and control voltage is supplied to W1 on the variable speed interface control board. This starts or changes the variable speed motor operation to the programmed heat fan speed. Step 8: Once the burner shuts down operation, the fan continues to run and cools down the furnace. The fan control Thermostat opens once it reaches the fan off temperature setting. This removes line voltage from the fan center relay and the fan center relay contacts #4 and #6 open. Control voltage is removed from W1 on the variable speed interface control and the variable speed fan start the preprogrammed fan off delay or continues the continue the constant fan operation if selected.

Fan Sequence of Operation in Cooling

Step 1: The Thermostat's contacts close between RC and Y, and RC and G supplying control voltage to the oil furnace's Y and G terminals. This supplies control voltage to the variable speed fan interface control that starts the indoor fan in the preprogrammed fan operation (refer to dip switch setting metric for fan programmed options in the Installers Guide and Service Facts).

Step 2: Once the Thermostat has satisfied the demand for cooling, control voltage is removed from Y and G on the Oil Furnace's variable speed interface control and the variable speed fan starts the preprogrammed fan off program if applicable or continues the constant fan operation if selected (refer to dip switch setting metric for fan programmed options in the Installers Guide).

Fan Sequence of Operation (Fan switch "ON")

Step 1: When the Thermostat's fan mode has been set to constant fan operation, the contacts between RC and G are closed supplying control voltage to the Oil Furnace's variable speed fan interface control which runs the indoor fan_continuously at 50 percent of the Cooling fan speed program. Determine the Oil Furnace interface board's dip switch settings 1,2,3,4 (see airflow table for settings) for cooling speed CFM. Divide by 2 for continuous fan CFM.

SERVICE

🛆 WARNING

EXPLOSION HAZARD

DO NOT use this furnace if any component has been underwater. Immediately call a qualified heating contractor to inspect the furnace and replace any part of the soft ceramic fiber refractory chamber or furnace control system that has been exposed to water.

Failure to follow this warning may cause property damage, personal injury or death.

TROUBLESHOOTING

🛆 WARNING

SHOCK HAZARD

When testing electrical equipment, always follow standard electrical safety procedures.

Before beginning these troubleshooting procedures, always review these basic points:

- 1) Check for 120 VAC power to the furnace. If there is no voltage, check the disconnecting switch for circuit breaker trip or blown fuses.
- 2) Make sure the room Thermostat is set on the heating mode and is "calling for heat".
- 3) Check for sufficient oil supply and that all oil shutoff valves are open.

4) To successfully service this oil furnace, the following recently (within the last year) calibrated instruments must be available.

-Smoke spot test kit with Bacharach-type oil burner smoke scale

-Carbon dioxide $(\mathrm{CO}_{_2})$ and carbon monoxide (CO) test kit or analyzer

-Flue gas temperature measuring instrument -Draft gauge, capable of measuring 0.01 to 0.25 in. W.G. draft (Draft is the pressure differential between the static pressure measured in the vent pipe, or just above the combustion chamber, and the indoor atmospheric pressure. Under normal operating conditions, it will have a **negative** value, i.e. the pressure in the combustion chamber and the vent system are less than room air pres sure.)

-Multimeter (analog or digital type)

-Oil pressure gauge, capable of measuring at least 0 to 200 $\ensuremath{\mathrm{PSIG}}$

-Burner electrode and nozzle setting gauge

5) Be familiar with the correct operation of these instruments as well as how to adjust the oil burner settings (refer to burner manufacturer's literature).

△ WARNING

EXPLOSION HAZARD

Repeated operation of the oil primary safety control reset button can cause a build-up of unburned oil in the combustion chamber. An accumulation of oil in the combustion chamber is a hazardous situation and may cause a fire or explosion.

A. Symptom: Furnace does not operate.

Items to check:

- 1) Make sure the disconnecting switch is "ON" and the circuit breaker has not tripped, or fuses have not blown.
- 2) Confirm there is 120 VAC at the fan center junction box.
- 3) Confirm the room Thermostat is wired correctly, set on the "HEAT" mode, and "calling for heat".
- 4) On the oil primary control, lockout has occurred if the indicator light (an LED) is rapidly flashing; depress the oil primary reset button.

If the burner does not operate properly after depressing the reset button three (3) times, turn off the electrical power to the furnace and close the manual oil shutoff valve. Reference the literature insert shipped with the furnace for detailed diagnostic information.

B. Symptom: Burner short cycles or "locks out" on oil primary safety control.

Items to check:

- 1) Fuel oil tank nearly empty or oil flow restriction. Refill oil tank, replace oil filter, open all shutoff valve(s), and purge oil line(s) of air.
- 2) If the oil primary control has not "locked out" (e.g., on the primary control, the indicator light is not flashing), measure the electrical current to the room Thermostat. Set the heat anticipator on the room Thermostat to the current value measured. Also, check the wiring between the Thermostat and primary control to be sure it is correct and no loose connections exist.
- 3) Inspect the burner flame sensor, "cad cell", to be sure the lens is clean and the cell is correctly aimed at the

flame.

- 4) Inspect the burner oil nozzle for blockages and signs of deterioration. Replace the nozzle, if required. Also, measure and reset the electrode gap and alignment. If badly worn or deformed, replace the electrodes. (Refer to the burner manufacturer's instructions.)
- 5) Confirm there is a strong spark across electrodes. Generally, viewing a spark jump across the electrodes is sufficient indication the ignition transformer is operating correctly. **Testing an electronic ignition transformer with a transformer tester is generally not recommended.**
- 6) Inspect the heat exchanger through the cleanout ports for signs of excessive soot, scale buildup, or blockage. If a heavy deposits are present, clean the heat exchanger.

C. Symptom: Burner short cycles on high limit Thermostat, but does not "lock out" on oil primary safety control.

Items to check:

- 1) Open dampers or registers in the air distribution system. Clear any duct system restrictions.
- 2) Inspect and clean all air filters in the air distribution system.
- 3) Inspect blower for interference with rotation or locked rotor condition. Also, confirm the blower wheel is secured to the fan motor shaft.
- 4) The fan motor or run capacitor may be damaged. Test and replace the motor or capacitor, as required.
- 5) Increase fan speed.
- D. Symptom: Unable to achieve clean combustion by making burner air adjustments.

Items to check:

- 1) Measure the burner air tube insertion depth and alignment. The end of the tube should not protrude inside the combustion chamber. The end of the tube should be approximately ¼ inch away from the inner wall surface of the combustion chamber.
- 2) Inspect the oil nozzle for excessive wear, blockage, or deterioration. Measure and, if necessary, reset the nozzle depth or turbulator location with respect to end of the burner head. Replace the nozzle, if necessary (refer to the oil burner manufacturer's instructions).
- 3) Measure the oil pump pressure. If required, adjust the pressure to burner nameplate value. (This is the typical minimum pressure required to obtain the full input rate from the furnace).

4) Verify the burner is configured as specified in Table 1 and adjusted according to the Initial Burner Operation section of this manual (page 8) and the burner manufacturer's instructions.

- 5) Measure the overfire draft. If required, adjust the barometric damper to increase the stack draft to obtain an overfire draft of 0.02 in. W.G. with the burner operating. (This is the typical minimum draft required to obtain the specified flue gas combustion analysis values given in Table 1.) If the specified overfire draft cannot be obtained with a stack draft of 0.02 in. W.G., the heat exchanger may be partially blocked and could require cleaning.
- 6) Measure the draft at the point where the vent connector attaches to the heat exchanger flue pipe. With the

burner operating, the stack draft should not exceed 0.05 in. W.G. If the stack draft has been adjusted above this value to give the proper overfire draft, the heat exchanger will require cleaning.

If there is little or no stack draft, the chimney flue way may require cleaning, the chimney is too restrictive, or a downdraft condition exists.

E. Symptom: Furnace blower will not start.

Items to check:

1) See pages 16, 17, 18, 19.

F. Symptom: Blower cycles on and off after the burner has shutdown.

Item to check:

1) Increase the fan limit control differential. Typically, the fan "off" setting should be 30 degrees F. below the fan "on" setting. Adjust the setting as required.

FIRE HAZARD

If the fan and high limit control is faulty, it should be replaced. However, it must only be replaced by the same make and model as the original. All the original temperature settings should be duplicated on the replacement model as well. REMOVE THE LOW VOLTAGE JUMPER IN THE CONTROL, IF EQUIPPED. See Figure 1. Refer to the electrical diagram for proper electrical connections. (page 10 & 11)

FLAME SENSOR ("CAD CELL") CHECKOUT PROCE-DURE

On the oil primary control, to check the electrical resistance of the flame sensor (referred to as a cadmium sulfide photocell, or "cad cell"), depress the reset button on the oil primary safety control while the burner is firing. The oil primary control will report the measured resistance range of the cad cell by flashing the LED (light emitting diode) one (1) to four (4) times. Refer to the oil burner manufacturer's instructions for further details.

For all primary controls, an alternate procedure to check the flame sensor operation is as follows:

1) Remove the flame sensor lead wires from the terminals (labeled "CAD CELL" on the underside of the control) of the oil primary safety control module. Start the burner. Shortly after combustion is established, place a temporary jumper wire across the cad cell terminals, or leads, of the control. Connect an ohmmeter across the flame sensor lead wires. The measured resistance should be less than,

- 1600 Ohms for the cad cell.
- 2) Stop the burner and remove the jumper wire.
- 3) With the burner off, measure the resistance of the flame sensor with the ohmmeter. The resistance of the sensor without "seeing" a light source (so-called "dark" cell resistance) should be greater than,
 - 20,000 Ohms for the cad cell.
- 4) If the sensor resistances are outside the acceptable ranges given above, confirm the lens of the cell is clean and the cell is located correctly in the burner housing. If the cell is clean and correctly located, replace the flame sensor.

NOTICE: All resistances are approximate values only and will vary depending upon the intensity of the light source (flame or sunlight) and the condition or age of the cad cell.

MAINTENANCE

Air Filter(s)

Highboy and lowboy furnace models are factory-supplied with a permanent-type, air filter. Downflow/Horizontal models are not shipped with a filter. However, external filters are required. At least twice a year, remove the air filter(s) for cleaning. To clean a washable filter, soak it in water with a mild detergent and then rinsing it with clean water. Allow the filter to air dry before reinstalling it in the furnace filter rack.

If the furnace, or duct system, is equipped with disposabletype (paper element), air filters, inspect them every month for an excessive accumulation of dust and dirt. Replace disposable air filters at least twice a year. Make certain the replacement filter is the same size as the one being replaced.

The filter size is marked on the outer edge of the air filter. Install the filter with the arrow marked on the filter pointing toward the furnace.

Oil Burner

🗥 WARNING

ANNUAL SERVICE REQUIRED

A qualified heating contractor MUST service the oil burner in this furnace at least once a year.

Generally, service to the burner will involve a thorough inspection and cleaning of the burner, replacement of the oil nozzle and oil filter, and readjustment of the burner to achieve proper ignition and clean combustion.

Blower and Motor

NOTICE: The fan motor has sealed bearings that do NOT require lubrication.

The blower and fan motor will **not** normally require any service. This furnace is equipped with a directly-driven blower. Therefore, it will **not** require any retensioning or replacement of a drive belt.

Heat Exchanger

BURN HAZARD

DO NOT attempt to clean the heat exchanger unless electrical power and fuel flow to the furnace are turned off and the furnace is at room temperature.

CAUTION

FRAGILE

The combustion chamber refractory material is fragile and can be easily damaged. If the inner radiator of the heat exchanger is cleaned, avoid scraping or hitting the walls of the combustion chamber.

FRAGILE

Do not brush or scrape the surface of the combustion chamber. It can be easily damaged.

CAUTION

ANNUAL SERVICE REQUIRED

A qualified heating contractor MUST inspect the heat exchanger in this furnace at least once a year. If heavy deposits are found, immediate cleaning is required.

All heat exchanger surfaces should be as clean as possible for the most efficient operation of the furnace. The heat

exchanger may require cleaning after every heating season, as combustion of fuel oil tends to produce soot, particulate matter, and scale, due to corrosion. These materials coat the inner walls of the heat exchanger. This coating reduces the heat transfer effectiveness of the heat exchanger and can hinder the flow of flue gases from the furnace.

NOTICE: Accumulation of heavy soot deposits over one heating season may indicate the oil burner is out of adjustment.

The heat exchanger may be inspected and cleaned through two (2) access, or cleanout, ports located in the burner compartment, on highboy and lowboy models, or protruding through the front casing panel, on the horizontal/downflow model. Each cleanout port consists of a 2-inch O.D. tube closed by a pressed-in cap, refer to Figure 2.

Using a screwdriver, or a large pair of adjustable jaw pliers, remove each cleanout port cap. With the aid of a portable light source, peer into the heat exchanger. As much as possible, loosen all material and deposits clinging to the heat exchanger walls using wire brushes, or any suitable tool. Collect and remove this material by hand or with the assistance of a vacuum cleaner and a nozzle-type attachment.

The heat exchanger may also be cleaned through the flue pipe connection. With the furnace turned off and at room temperature, carefully remove the vent connector and the heat exchanger flue pipe, if equipped, to inspect and clean the heat exchanger.

The inner radiator of the heat exchanger may be cleaned from the inside of the combustion chamber. This involves removal of the burner and the burner mounting plate from the heat exchanger.

Using a portable light source with a mirror inserted through and into the heat exchanger, check for an accumulation of soot, scale, and particulate matter on the walls and in the base of the drum, or on the floor of the combustion chamber. If a significant accumulation is present, it should be removed. Use a flexible wire brush to loosen the deposits on the heat exchanger walls. Remove any loose foreign material using a vacuum cleaner. Replace all gaskets, if removed, with new (unused) gaskets. Reassemble the burner mounting plate, burner flange, and new gaskets in the reverse order they were removed. A rubber mallet, or equivalent tool, may be useful for reinstalling the caps in the cleanout tubes.

🛆 WARNING

RE-INSTALL ALL PARTS

Should the unit be disassembled, all components, panels, block offs, collars, gaskets and fasteners must be reassembled as originally factory produced. Failure to do so may result in property damage, injury, or loss of life!

Flue and Chimney

At least once a year, thoroughly inspect the heat exchanger flue pipe, the vent connector, the chimney, or vent, and the barometric damper for signs of sagging, loose connections, excessive corrosion, and deterioration. Clean, repair, or replace any components for continued safe and proper operation of the furnace.

INITIAL OPERATION OF THE FURNACE

INITIAL BURNER OPERATION

EXPLOSION HAZARD

- To avoid possible explosion, DO NOT attempt to light the burner if:
- Oil has accumulated in the base of the combustion chamber.
- The furnace is full of fuel vapors.
- The combustion chamber is very hot.

A CAUTION

SERVICE INSTRUCTIONS

The oil burner must be installed and adjusted using recently (within the last year) calibrated combustion instruments by a qualified heating dealer prior to placing the furnace in operation. Refer to this manual and the oil burner instruction manual for details.

CAUTION

MINIMIZE OIL ODOR

To minimize initial fuel oil and combustion odors, ventilate the building well while operating the furnace for the first time.

Do NOT run the oil pump dry (without oil) for more than two (2) minutes. Damage to the oil pump may result.

To initially operate the furnace:

- 1) Turn the electrical disconnecting switch to the "OFF" position.
- 2) Set the room Thermostat above room temperature.
- 3) Be sure the oil tank is full of clean # 2 fuel oil.
- 4) Open all shutoff valves in the oil line.
- 5) Turn on the electrical disconnecting switch and prime the burner oil pump according to the pump manufacturer's instructions.
- 6) When ignition is established, make a temporary air adjustment for a clean, smoke-free flame. At this point, the final burner adjustment should be made using test instruments to measure oil pump pressure, smoke number, carbon dioxide (CO_2), carbon monoxide (CO), draft, and flue gas temperature.
 - Refer to item (4) under the Troubleshooting section of this manual for a list of required test instruments.

In order to achieve the best combustion efficiency, the following procedure is recommended.

- 7) Measure the oil pump pressure. If required, adjust it to deliver the appropriate pressure for the burner. The oil pump should be set to produce 130 PSIG, for the R.W. Beckett model AF burner.
- 8) Carbon Dioxide (CO_2) and Carbon Monoxide (CO) In order to assure that proper and safe combustion is taking place, carbon dioxide and carbon monoxide measurements must be taken. A CO_2 reading within the limits of Table 1 with no measurable CO is desirable. The maximum acceptable CO reading is about 50 PPM. If the CO reading is too high, open the burner air shutter, or air band, slightly to permit more combustion air to the flame. Recheck the CO level and adjust as required.

9) Draft – Draft measurements should be taken through the overfire port and in the vent connector, not more than 12 inches away from the furnace outlet. A 5/16 in. hex washer head bolt plugs the overfire port in the burner mounting plate. Remove the bolt and insert a suitable draft measurement gage. After the chimney (or stack gas passageway) has warmed up to operating temperature, approximately 15 to 20 minutes of burner operation, adjust the barometric damper to obtain the correct overfire draft reading. The overfire draft should read 0.02 in. W.G. The draft measured at the flue (stack draft) should read no more than 0.05 in. W.G.

NOTICE: The overfire draft is the more important measurement and should be used to adjust the setting of the barometric draft control.

10) Flue Gas Temperature – The flue gas temperature will vary depending on heat input rate, air temperature rise across the heat exchanger, and airflow rate through the furnace. To prevent excessive water vapor condensation from the flue gases, the gross flue gas temperature should not fall below 330°F. In addition, if the gross flue gas temperature exceeds 650°F, the heating efficiency of the furnace will be reduced.

To reduce high flue temperatures, after properly adjusting the burner, check for blocked supply/return airflow. Remove any blockages, increase fan speed, or consider reducing the furnace heat input rate. Also, verify there is no air leakage into the combustion chamber from around the burner mounting flange or heat exchanger mounting plate. If flue gas temperatures are too low, consider increasing the heat input rate or reducing the amount of supply/return airflow.

11) Cycle the furnace several times to verify the burner lights off and shutsdown smoothly without excessive noise or smoke production.

SUPPLY/RETURN AIRFLOW AND AIR TEMPERATURE

The supply/return airflow shall be set to obtain an air temperature rise, across the furnace, in the range of 55 to 85°F. See CFM vs Temperature Rise table, Page 3. Since the flow resistance of each duct system is slightly different, the airflow (fan speed) may have to be changed in the field to achieve a satisfactory temperature rise.

One way to measure the temperature rise across the furnace is to insert temperature measuring devices (e.g. thermometers) into the return air duct and into the supply air duct about 12 inches from the furnace. After the furnace has been firing continually for over 20 minutes, read the temperature difference between the two (2) thermometers. The temperature difference should not exceed 85°F, nor be less than 55° F. A temperature rise of 70° F is considered to be optimum for comfort.

The blower speed is adjusted by changing the dip switch settings on the variable speed interface board. See heating airflow tables.

Furnace Model:	All				
Burner Model:	R.W. Beckett, AF				
Standard Nazzla	Delavan, 0.75 GPH / 80 deg. angle /				
Stanuaru Nozzie:	hollow cone				
Oil Pump Pressure (PSIG):	130				
Burner Head Type:	F3				
Head / Turbulator Setting:	"Z" = 1.125 in.				
Air Band Setting:	Fully-closed				
Air Shutter / Damper Setting:	5				
Overfire Draft (in. W.G.):	0.02				
Smoke Spot, Maximum (Bacharach Scale):	# 1				
Carbon Dioxide, CO ₂ , Maximum (%):	13				
Carbon Dioxide, CO ₂ , Minimum (%):	12*				
Carbon Monoxide, CO (PPM)	0				
Oil Solenoid Valve Equipped:	YES				
Prepurge Time (sec):	15 sec.				
Postpurge Time (sec):	None				
Ignition Type:	Interrupted				

Table 1: Oil Burner Application and Specifications * When operating these furnaces at the lowest input rate (84,000 BTUH), the carbon dioxide (CO₂) value may not be able to be adjusted above 12%. This is normal and does not necessarily indicate a problem.

To adjust the fan speed, follow this procedure:

- a. Turn off all electrical power to the furnace at the disconnecting switch.
- b. Remove the burner compartment access door.
- c. Locate Variable Speed interface board on blower housing. Set dip switches for desired air flow. See air flow tables for settings.
- d. Replace the blower compartment access door.
- e. Restore electrical power to the furnace at the disconnecting switch.

With the furnace operating, measure the air temperature rise across the furnace again. If the value does not fall in the range of 70 to 100° F, repeat the above procedure.

The following table and graph explain the delay-off settings:

SWITCH	SETTINGS	SELECTION	NOMINAL AIRFLOW		
5 - OFF	6 - OFF	NONE	SAME		
5 - ON	6 - OFF	1.5 MINUTES	100% *		
5 - OFF	6 - ON	3 MINUTES	50%		
5 - ON	6 - ON	**	50 - 100%		

COOLING OFF - DELAY OPTIONS

- * This setting is equivalent to BAY24X045 relay benefit.
- ** This selection provides ENHANCED MODE, which is a ramping up and ramping down of the blower speed to provide improved comfort, quietness, and potential energy savings. See Cooling Off-Delay table for setup. The graph which follows, shows the ramping process for the ENHANCED MODE.

FURNACE LIMIT AND BLOWER CONTROLS

All furnaces are equipped with a combined thermostatic high temperature limit and blower (fan) control. The high temperature limit is set such that it does not permit a supply (discharge) air temperature above its setting. See Table 2.

The thermostatic fan control should be set so the greatest fuel utilization efficiency of the furnace is obtained. Generally, a blower "ON" setting of 130°F should give the best result. After the burner shuts down, the circulating air blower will continue to operate until the air temperature inside the furnace falls below the lower setting on the fan control.

This delay on blower shutdown extracts residual heat from the furnace heat exchanger that would ordinarily be lost to the outdoor atmosphere. If a longer, or shorter, cooldown period is desired, the fan control differential setting may be reset to lengthen, or shorten, the cycle as desired. Refer to Table 2 for the standard fan and high limit control settings. In addition to the combined fan and limit control, the horizontal /downflow furnace is equipped with an **auxiliary high limit temperature control** located in the blower compartment, refer to the electrical diagram on page 10. The purpose of this control is to prevent overheating of the blower motor and air filter(s), if airflow is severely reduced.

If the duct system becomes partially, or totally, blocked or the furnace air filter(s) become excessively dirty causing the blower to fail to circulate enough air, the thermostatic high temperature limit (or, if equipped, the auxiliary high temperature limit) may activate to prevent very high discharge air temperatures from occurring. Should airflow be restricted, the furnace might cycle on and off too frequently or become inoperative. To correct this condition, verify that all supply and return dampers and registers in the air distribution system are open. If this fails to resolve the problem, turn off the electrical power to the furnace. Remove the blower compartment access door to examine the air filter(s) and blower for blockages or a loose blower wheel. (On the highboy and horizontal / downflow furnaces, air filters should be mounted external to the furnace casing.) If possible, correct the condition by cleaning or replacing the air filter(s), freeing the blower wheel of any foreign materials, or securing the blower wheel to the fan motor shaft. **Always replace the blower compartment access door when service is finished.** Restore electrical power to the furnace.

ROOM THERMOSTAT

Most room Thermostats are equipped with user adjustable, or selectable, levels of heat anticipation. This feature helps to reduce the amount of room air temperature overshoot that occurs after a heating cycle.

To adjust the heat anticipator, measure the electrical current output of the oil burner primary safety control to the room Thermostat. (If measurement is not possible, the value of current output may be marked on the cover of the control). Set the Comfrot Control heat anticipator to match the electrical current output of the oil primary safety control.

Quick Check Motor Will Not Run

ICM-2 QUICK CHECK

Blower Motor Will Not Run

1. Jumper 24 Volt A.C "R" T erminal to "G" terminal on the Low Voltage Terminal board on the variable speed interface board.

Does motor run?

NO: Go to step #2. **YES:** Motor runs, check thermostat and thermostat wire.

2. Unplug 16 wire low voltage harnass from the interface board. Jumper 24 Volts A. C, to pins #12, #15 and common pins #1 and #3.

Does the motor run?

9623 11/21/96 ECM Manual 29

Quick Check Motor Will Not Run

3. Unplug 16 wire low voltage harness from the motor. Jumper 24 Volts A.C. to motor low voltage plug pins #12 and #15 and pins #1 and #3 which are common.

Does motor run?

4. Is the line voltage to the motor high voltage power plug pin #4 and pin #5 correct?

Furnace ICM-2 motor correct voltage is 120 Volts A.C. and there must be a jumper wire in this plug between pins #1 and #2.

